Bonneville Power Administration Fish and Wildlife Program FY99 Proposal #### Section 1. General administrative information # **Evaluate Effects of Hydraulic Turbulence on the Survival of Migratory Fishes** | Bonneville project number, if an on | going project 9113 | |--|------------------------------------| | Business name of agency, institution
Oak Ridge National Laboratory | or organization requesting funding | | Business acronym (if appropriate) | ORNL | | | | #### Proposal contact person or principal investigator: | Name | Dr. Glenn F. Cada | |-----------------|--| | Mailing Address | Oak Ridge National Laboratory
P.O. Box 2008 | | City, ST Zip | Oak Ridge, TN 37831-6036 | | Phone | 423/574-7320 | | Fax | 423/576-3989 | | Email address | gfc@ornl.gov | #### Subcontractors. | Organization | Mailing Address | City, ST Zip | Contact Name | |-----------------|-------------------|-------------------|-----------------| | U.S. Geological | One Migratory | Turners Falls, MA | Dr. Mufeed Odeh | | Survey | Way, P.O. Box 796 | 01376 | | | Idaho National | 2525 Fremont Ave. | Idaho Fall, ID | Garold Sommers | | Engineering and | | 83415-3830 | | | Environmental | | | | | Laboratory | | | | | | | | | #### NPPC Program Measure Number(s) which this project addresses. 5.6A.14, also contributes information to many other items in 5.6 and 5.7 #### NMFS Biological Opinion Number(s) which this project addresses. NMFS Biological Opinion - Reinitiation of Consultation on 1994-1998 Operations of the Federal Columbia River Power System and Juvenile Transportation Program in 1995 and Future Years (March 2, 1995) - Conservation Recommendation No. 5 (study engineering and biological aspects of juvenile fish passage through turbines, develop biologically based turbine design criteria, etc.) #### Other planning document references. Snake River Salmon Recovery Plan Task Nos. 2.2.a., 2.2.d., 2.3.a., 2.3.b., 2.3.d., and 2.8.a.2. Wy-Kan-Ush-Mi Wah-Kish-Wit recommendations to improve juvenile salmon passage by (1) optimizing the operations of turbines and retrofitting existing turbines with advanced designs to decrease fish mortality, (2) implementing controlled spill to enhance fish passage, and (3) evaluating predator control programs. #### Subbasin. Laboratory study not associated with a particular subbasin #### Short description. Design, construct, and operate a laboratory apparatus to evaluate the effects of turbulence on fish survival and swimming performance. Turbulence intensities and scales would be within the range of those seen in hydroelectric turbines, fish bypass systems, spill, and vessel passage. ## Section 2. Key words | Mark | Programmatic | Mark | | Mark | | |------|------------------|------|------------------|------|-----------------------| | | Categories | | Activities | | Project Types | | X | Anadromous fish | | Construction | | Watershed | | + | Resident fish | + | O & M | | Biodiversity/genetics | | | Wildlife | | Production | + | Population dynamics | | | Oceans/estuaries | X | Research | | Ecosystems | | | Climate | + | Monitoring/eval. | X | Flow/survival | | | Other | + | Resource mgmt | | Fish disease | | | | | Planning/admin. | | Supplementation | | | | | Enforcement | | Wildlife habitat en- | | | | | Acquisitions | | hancement/restoration | #### Other keywords. turbulence, tailrace, draft tube, hydrodynamics, predation, hydroturbine systems Section 3. Relationships to other Bonneville projects | Project # | Project title/description | Nature of relationship | |-----------|---------------------------|------------------------| | | | | | | | | # Section 4. Objectives, tasks and schedules Objectives and tasks | Obj | lives and tasks | Task | | |-------|----------------------------|-------|------------------------------------| | 1,2,3 | Objective | a,b,c | Task | | 1 | Assess State-of-the-Art in | a | Review literature and determine | | | turbulence studies | | turbulence values to test | | | | b | Evaluate existing experimental | | | | | apparatus | | 2 | Develop test apparatus | a | Engineering design | | | | b | Construction and installation | | | | c | System shake down | | 3 | Hydraulic evaluation | a | Flow measurement and calibration | | | | b | Velocity mapping | | | | c | Detailed description of turbulence | | | | | in system | | 4 | Biological evaluation | a | Evaluate fish mortality and injury | | | | | caused by turbulence | | | | b | Evaluate reduced swimming | | | | | performance | | 5 | Data analysis | | | | 6 | Report preparation | | | Objective schedules and costs | | Start Date | End Date | | | | |-------------|------------|-----------------|--------|--|--| | Objective # | mm/yyyy | mm/yyyy | Cost % | | | | 1 | 10/1998 | 01/1999 | 11 | | | | 2 | 11/1998 | 11/1999 | 20 | | | | 3 | 02/1999 | 04/1999 | 22 | | | | 4 | 04/1999 | 07/1999 | 22 | | | | 5 | 04/1999 | 08/1999 | 15 | | | | 6 | 08/1999 | 10/1999 | 10 | | | #### **Schedule constraints.** Availability of appropriate fish for testing # **Completion date.** FY 2000 # Section 5. Budget FY99 budget by line item | Item | Note | FY99 | |--|--|---------| | Personnel | ORNL (35K) CAFRC (65K) INEEL (5K) | 105,000 | | Fringe benefits | ORNL (15K) CAFRC (23K) INEEL (2K) | 40,000 | | Supplies, materials, non-
expendable property | Pipe, reducers, pump, timber, pressure and velocity transducers, flow meters, etc. | 10,000 | | Operations & maintenance | Utilities, fish test, etc. | 1,500 | | Capital acquisitions or improvements (e.g. land, | High speed video system, PC(s) and software. | 50,000 | | buildings, major equip.) | software. | | | PIT tags | # of tags: | | | Travel | | 6,000 | | Indirect costs | | 25,500 | | Subcontracts | | | | Other | | | | TOTAL | | 238,000 | Outyear costs | Outyear costs | FY2000 | FY01 | FY02 | FY03 | |-------------------|--------|------|------|------| | Total budget | | | | | | O&M as % of total | | | | | #### Section 6. Abstract It has been recognized by numerous investigators that excessive turbulence associated with turbine passage, spill passage, and fish bypass systems at hydroelectric dams may have adverse effects on downstream migrating fish. Although turbulence has been poorly studied, it is suspected that excessive levels can cause direct injury and mortality, or at the least disorient fish so that they become more susceptible to predation. In response to the goal of developing an improved understanding of the mechanisms of fish mortality (FWP Measure 5.6A.14), we propose to design and construct an experimental apparatus to generate known intensities and scales of turbulence in the laboratory, expose migratory fish (juveniles and smolts) to these levels of turbulence, and quantify the biological responses. Biological responses would be measured in terms of injuries, direct mortality (short-term and long-term), and changes in swimming capacity that might alter susceptibility to predation. Results of the studies would be used to develop biologically based performance criteria for turbulence that could be used by regulators and in the design of turbine systems, bypass systems, and spill procedures. The study would be accomplished largely during FY 1999, and the results would be conveyed by periodic progress reports, a final test report, and open literature publications. #### Section 7. Project description #### a. Technical and/or scientific background. Turbulence exists at all scales in nature, from the swirling motion created when a salmon scoops out a redd (scales smaller than the size of the fish) to large whirlpools in a river (scales much larger than a fish). Turbulence near a large vessel, such as a barge, may vary considerably in both intensity and scale. Similarly, near a hydropower facility turbulence occurs at different intensities and scales, depending location. High-intensity, small-scale turbulence, which occurs throughout a fish's passage through the turbine system, can distort and compress portions of the fish's body. Large-scale turbulence, which may be most pronounced in the draft tube and tailrace or in association with spill, creates vortices (swirl) which spin the fish and may cause disorientation. It is believed that this turbulence-caused disorientation, while perhaps not injuring the fish directly, may leave turbine-passed fish more susceptible to predators in the tailrace. Turbulent flow occurs when fluid particles move in a highly irregular manner, even if the fluid as a whole is traveling in a single direction. That is, there are intense, small-scale motions present in directions other than that of the main, large-scale flow (Vogel 1981). Unlike laminar flow, which can be described by a linear equation, turbulent flow can only be defined statistically (Gordon et al. 1992); descriptions of the overall motion within turbulent flows cannot be taken as describing the paths of individual particles. The effects of high levels of turbulence on fish survival are poorly known (Cada et al. 1997). In one of the few published studies, Killgore et al. (1987) placed paddlefish yolk-sac larvae in circular containers and exposed them to differing frequencies and intensities of turbulence created by water jets. Low turbulence caused 3 and 13 percent direct, short-term mortality, whereas high turbulence resulted in 87 and 80 percent short-term mortality. Longer-term direct mortality, indirect mortality, and physiological stress were not examined. Based on these laboratory studies and field measurements of pressures near commercial barges (which sometimes exceeded 50,000 dynes/cm² near the propellers), Killgore et al. (1987) suggested that turbulence generated in the immediate vicinity of commercial vessels could cause mortality among paddlefish larvae. The sensitivity of other species, including salmonid smolts, to turbulence near large vessels such as barges has not been studied. Furthermore, the responses of fish to excessive turbulence associated with turbine passage, spill, or fish bypass systems is unknown. Under the goal of improving Columbia and Snake River salmon passage, Task 5.6A.14 calls for the Corps of Engineers and other parties to conduct laboratory studies, numerical analysis, hydraulic model studies and prototype testing to develop an improved understanding of the mechanisms of fish mortality in turbines. This information should be used to develop biological design criteria in advanced turbine designs or modified unit operations to increase fish survival. #### b. Proposal objectives. The overall objective of this laboratory study is to examine, under controlled conditions, the responses of fish to varying intensities and scales of turbulence. Responses would be measured in terms of direct mortality (short- and long-term), injury, and disorientation and decreased swimming performance that might lead to increased susceptibility to predation. The general null hypothesis to be tested is that turbulence has no significant adverse effect on fish survival and swimming capacity. This hypothesis will be refined as needed to consider different intensities and scale of turbulence, different species and life stages of fish, and different biological responses (e.g., injury, direct mortality, disorientation and diminished swimming ability). Test fish will be exposed to known levels of turbulence, and their responses will be compared to those of control fish. #### c. Rationale and significance to Regional Programs. See Section 8 for a description of related efforts of other organizations. The conclusion of numerous workshops and meetings sponsored both the U.S. Department of Energy and the U.S. Army Corps of Engineers is that development of advanced (fish friendly) turbines is hindered by a lack of information about the biological effects of potential injury mechanisms associated with turbine passage. One of these mechanisms, turbulence, can reach very high levels not only within a turbine, but also in the tailrace (associated with spill passage), and within fish bypass structures. Although little is known about the biological effects of excessive turbulence, it has been suggested that turbulence can cause direct injury and mortality, or at the least disorient fish so that they become more susceptible to predators. We propose to design and construct an experimental apparatus to generate known intensities and scales of turbulence in the laboratory, expose migratory fish (juveniles and smolts) to these levels of turbulence, and quantify the biological responses. Biological responses would be measured in terms of injuries, direct mortality (short-term and long-term), and changes in swimming capacity that might alter susceptibility to predation. Results of the studies would be used to develop biologically based performance criteria forturbulence that could be used by regulators and in the design of turbine systems, bypass systems, and spill procedures. The results of this study would satisfy the goals of FWP Measure 5.6A.14, in that it will "develop an improved understanding of the mechanisms of fish mortality in turbines," and can be used "to develop biological design criteria to be used in advanced turbine designs or modified unit operations to increase fish survival." This study would also provide information useful for many other FWP Measures aimed at improving Columbia and Snake River salmon passage (Section 5.6) and reducing predation (Section 5.7). #### d. Project history Not applicable. This is a new project. #### e. Methods. - 1. Conduct a review of turbulence The review of Cada et al. (1997) will be updated to incorporate any recently published information on damaging effects of turbulence. In addition to a review of peer-reviewed literature and agency reports, investigators working in the general area of hydrodynamic effects of river/reservoir systems will be contacted to develop a range of turbulence values to be tested that will encompass expected levels of turbulence associated with hydroelectric turbines, fish bypass structures, draft tubes, dam tailwaters, and large vessels. The first progress report will present the results of these reviews and consultations, and outline how the information is reflected in the design of the turbulence chamber. - **2. Design and build a turbulence chamber -** Based on information developed in (1), the design of an experimental apparatus will be finalized and constructed to expose fish to appropriate scales and intensities of turbulence. A generalized sketch of the design is shown in Figure 1. - **3. Instrument the turbulence chamber -** The turbulence chamber will be fitted with Laser Doppler velocity meters (LDV meters) to estimate water velocities and turbulence on a very small scale. High-speed cameras will be used to record and subsequently analyze the path of fish through the chamber. Water temperatures and dissolved oxygen concentrations will also be measured to ensure that these values remain within acceptable ranges. Physical and chemical characteristics of water in the test apparatus will be measured and controlled to ensure that they do not influence fish injuries and mortalities. For example, water temperatures could increase in the recirculating test loop such that test fish are adversely affected; water temperatures should be maintained in the test loop at values similar to those occurring in rivers during the time when the particular species/lifestages being tested are likely to become entrained. Dissolved oxygen concentrations in the recirculating water should not be allowed to decline to stressful levels. Entrainment of air should be avoided because subsequent pressurization within the turbulence chamber could supersaturate the recirculating water with nitrogen gas. **4. Expose fish to pre-established levels of turbulence -** Test fish will be introduced to the turbulence chamber singly, pass through at known velocities and turbulence intensities, and collected in a holding chamber for post-exposure examination. The introduction techniques will not expose fish to rapid velocity or pressure changes prior to passage through the turbulence chamber. Similarly, the post-chamber collection procedure will minimize collection injury and ensure that fish are not reintroduced to the test loop. Control fish should be exposed to all aspects of pre-test handling, introduction, collection, and post-test holding as test fish, except for passage through the turbulence chamber. Procedures for selecting and handling both control and test batches of fish will be fully described in the first test report. Although appropriate controls can be used to remove the effects of handling, introduction, and collection, these effects will be minimized in order to increase the power of the tests. Fish species tested in the turbulence chamber will include both salmonids (because of regulatory interest, sport, and commercial value) and shad (because of their great sensitivity to fluid-induced stresses). The test apparatus will be tested initially with juvenile rainbow trout; these fish can be obtained from a hatchery in large numbers and at a uniform size. They will give an indication of the types of injuries and mortalities that might be expected among similarly shaped salmonids, although they may be less susceptible to descaling than salmon smolts. Similarly, juvenile American shad can be obtained from hatcheries; this species is expected to be among the most sensitive species to turbulence and other fluid-induced stresses. The particular species and sequence of testing of species and lifestages will be based to some extent on availability. The list of fish species, sizes, and lifestages will include species of regulatory interest (e.g., salmonids; game fishes; eels; American shad) and fish expected to be sensitive to turbine-passage stresses (e.g., American shad; blueback herring). The sizes and lifestages selected should be representative of those likely to be entrained at hydropower projects, e.g., juveniles and downstream migrants. **5. Examine for injury and direct mortality -** All fish will be examined immediately for external injuries (e.g., fin loss, descaling, damage to eye or opercula) and mortality, and then transferred to holding tanks to assess longer-term (24-hr and 48-hr) delayed mortality. The precision of the estimates of mortality due to particular turbulence conditions will depend on a number of factors, including the variability in control and treatment mortality and the number of replicates. The anticipated numbers of fish available for testing, the numbers of fish partitioned among treatment and control groups, and the anticipated accuracy and precision of mortality estimates should be developed in the first test report. Test reports will present response curves (value of turbulence intensity or turbulence scale vs. biological effect) for each species and life stage. These curves could be used to provide performance criteria for the design of turbines and fish bypass systems, operational criteria for spill, and regulatory actions. For example, if the regulatory or design criteria specify zero mortality among juvenile steelhead and 10 percent mortality among largemouth bass, the response curves would be used to estimate the highest possible turbulence intensities that will comply with these criteria. Potentially, these criteria could even relate to indirect effects, e.g., susceptibility to predation is not significantly increased. **6. Test for reduced swimming performance -** Immediately after passage through the turbulence chamber, some of the uninjured fish will be transferred to a swimming competency chamber to determine whether important expressions of swimming performance (e.g., fast-start behavior; acceleration; maximum swimming speed), have been altered (compared to unstressed controls) by passage through the turbulence chamber. This test would help assess whether fish that are apparently uninjured after exposure to high levels of turbulence may nonetheless suffer mortality due to disorientation, decreased swimming performance, and increased susceptibility to predation. The second report will present the results of all testing in the turbulence chamber. #### f. Facilities and equipment. The research would be accomplished at the Conte Anadromous Fish Research Center (CAFRC), USGS-Biological Resources Division. The facility is located in Turners Falls, Massachusetts. The Engineering Complex has its water intake on a power canal (Cabot Power Canal) and discharges into the Connecticut River. The facility has three large flumes. Tests will be conducted in the east flume, which is 10 feet wide, 21 feet high, and 126 feet long. Flow capacity of the flumes exceeds 300 cubic feet per second (~135,000gpm). Also, the unique location of the facility makes it convenient for collecting actively migrating fish for the tests. An upstream (Ice Harbor type) fishway and a downstream sampling facility exist and are accessible at Cabot Station. CAFRC is fully equipped with research instrumentation necessary for hydraulic and biological evaluation of fish passage structures. The model shop at CAFRC and its personnel make fabrication, construction, and installation of test apparatus easy to do inhouse. CAFRC is also fully equipped with instruments, vehicles, boats, electroshockers, wet lab, holding tanks, compressed air, nets, etc. needed for collecting, handling, and holding of fish for testing purposes. Each staff member at CAFRC is equipped and has adequate experience with personal computers. Data collection and analysis is usually done using instrument-to-computer interfaces for more capacity and accuracy. #### g. References. Cada, G.F., C.C. Coutant, and R.R. Whitney. 1997. Development of biological criteria for the design of advanced hydropower turbines. DOE/ID-10578. Report to the Idaho Operations Office, U.S. Department of Energy, Idaho Falls, ID. 85 p. Gordon, N.D., T.A. McMahon, and B.L. Finlayson. 1992. Stream hydrology: An introduction for ecologists. John Wiley & Sons, New York, NY. 526 p. Killgore, K.J., A.C. Miller, and K.C. Conley. 1987. Effects of turbulence on yolk-sac larvae of paddlefish. Transactions of the American Fisheries Society 116:670-673. Vogel, S. 1981. Life in moving fluids: The physical biology of flow. Princeton University Press. Princeton, Mew Jersey. 352 p. # Section 8. Relationships to other projects The proposed work is not dependent on results from other projects funded under the FWP. However, it directly complements two related activities within the Columbia River basin. First, the objectives of the U.S. Department of Energy's Advanced Hydropower Turbine System Program is to design, build, and test one or more environmentally friendly (fish friendly) turbines. Progress on the development of advanced Kaplan turbines (the type used at many Columbia River hydroelectric plants) has been slowed by a lack of biologically based performance criteria for injury mechanisms such as turbulence. The DOE program is supporting studies to develop these criteria for shear and pressure effects, but because of limited funds is unable to support critically needed studies of turbulence effects. Second, the U.S. Army Corps of Engineers (Portland District) Turbine Passage Working Group is coordinating research efforts to understand and reduce fish passage losses. Like the DOE effort, the COE is supporting development of advanced turbines that could be used to retrofit existing turbines at their hydroelectric facilities in the Pacific Northwest. Although the COE recognizes turbulence as a potentially important, but poorly understood, mechanism affecting salmon survival, they do not have the resources to study this issue. ### Section 9. Key personnel Name: Glenn F. Cada **Position:** Research Staff Member, Environmental Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee, 37831-6036 **Telephone:** 423/574-7320 **Telefax:** 423/576-3989 **Internet:** gfc@ornl.gov #### **Higher Education:** Bachelor of Science in Zoology, University of Nebraska Master of Science in Zoology, Colorado State University 1977 Ph.D. in Zoology, University of Nebraska Areas of specialization: Fisheries biology and aquatic ecology Hydropower-Related Work Experience: I have worked at Oak Ridge National Laboratory since 1977, involved in research and assessment of environmental effects of energy development. I have performed hydropower-related research, development, and impact assessment for the U.S. Department of Energy (DOE), the Federal Energy Regulatory Commission (FERC), U.S. Agency for International Development (AID), and the Northwest Power Planning Council (NPPC). Since 1982 I have supported the DOE Hydropower Program by reviewing and analyzing environmental issues related to hydropower development (fish passage, water quality, and instream flow mitigation). I am helping develop biological studies in support of advanced turbine designs for the Advanced Hydropower Turbine System Program. I have provided technical support to the FERC Office of Hydropower Licensing for the analysis of impacts to aquatic resources of hydropower development in California, Colorado, and the Nooksack and Skagit river basins, Washington. I was a consultant to the U.S. Agency for International Development to develop site selection methodologies to minimize environmental impacts of small-scale hydroelectric development in Peru. I performed a critical review of the effects of water velocity on the survival of juvenile salmon and steelhead in the Columbia River Basin. Cada, G.F. and J.E. Francfort. 1995. Examining the benefits and costs of fish passage and protection measures. Hydro Review 14(1):47-55. Cada, G.F., C.C. Coutant, and R.R. Whitney. 1997. Development of biological criteria for the design of advanced hydropower turbines. DOE/ID-10578. U.S. Department of Energy, Idaho Operations Office, Idaho Falls, ID. 85 p. Cada, G. F., M.D. Deacon, S.V. Mitz, and M.S. Bevelhimer. 1997. Effects of water velocity on the survival of downstream-migrating juvenile salmon and steelhead: A review with emphasis on the Columbia River Basin. Reviews in Fisheries Science 5(2):131-183. Cada, G.F. In Press. Fish passage mitigation of impacts from hydroelectric power projects in the United States. Proceedings of the International Conference on Fish Migration and Fish Bypass-Channels, Vienna, Austria, September 25, 1996. Cada, G.F. 1997. Shaken, not stirred: The recipe for a fish-friendly turbine. pages 374-382 IN Waterpower '97. Proceedings of an International Conference & Exposition on Hydropower. American Society of Civil Engineers, New York, New York. # MUFEED ODEH, Ph.D., P.E. EDUCATION 1988 Ph.D., Civil and Environmental Engineering Area of June emphasis: Hydraulics and Fluid Mechanics Utah State University, Logan, Utah 1984 M.S., Civil Engineering May Area of emphasis: Municipal Public Works/Hydraulics University of Missouri, Columbia, Missouri 1982 B.S., Civil Engineering, (Dean's Honor List) December University of Missouri, Columbia, Missouri. #### PROFESSIONAL CREDENTIALS Registered Professional Engineer - Illinois and Massachusetts #### **AFFILIATIONS** American Society of Civil Engineers (since 1/1983), American Waterworks Association (1989-1990), Western Society of Engineers (1989-1990), American Fisheries Society, International Association for Hydraulic Research. Adjunct Assistant Professor - Utah State University and University of Massachusetts. External Advisor - Massachusetts Institute of Technology (MIT) #### RESEARCH EXPERIENCE At Conte Anadromous Fish Research Center I am in charge of all hydraulic research projects and facilities. Hydraulic research at CAFRC includes fish passage structures evaluation, hydraulic scale models and equipment testing and calibration, as well as other basic research in the area of hydraulic engineering. I supervise a research team comprised of engineers and biologists, prepare project budgets, and overlook planning, design and construction of all projects. I implement "Total Quality Management" and "Total Quality Principles." For almost three years at UWRL, my research activities included hydraulic computer and physical modeling of open channel and closed conduit flows. This included scale modeling of open channel flow, pipe flow, water hammer, dams, spillways, pumping pits, turbine intakes and testing and calibration of numerous types of flow measuring controls. Used Abu Dhabi distorted scale Tide Model for research on the effect of tides on desalination operations and the salinity of sea water. Also, potential oil spills in the gulf area and their impact on the environment and desalination activities and precaution measures were investigated. My duties included field data collection and analysis, supervision of model testing and remote data acquisition, experiment project design and report writing. I also reviewed contractor expense submittals, model test budgets and research plans. # Section 10. Information/technology transfer Technical information developed by this study will be distributed by means of two test reports (progress report and final report) and subsequent open literature publications. The test data would be used to develop biologically based performance criteria for the design of advanced hydropower turbines, fish bypass intakes and outfalls, and spill conditions, and hence are of both commercial and regulatory value.